

DLF-400-600-4000
 Operator's Manual

DYNALOAD DIVISION
36A NEWBURGH ROAD, HACKETTSTOWN, NJ 07840 Phone (908) 850-5088 Fax (908) 850-0679

SECTION PAGE

1. INTRODUCTION 1
2. SPECIFICATIONS 2
3. OPERATING INSTRUCTIONS 4
3.1 Constant Resistance Mode 5
3.2 Constant Current Mode 5
3.3 Pulse Mode 6
3.4 External Modulation 7
3.5 Power Rating 8
3.6 Protective Circuits 8
3.7 Special Applications 8
3.8 Effects of Cable Inductance on Pulse Loading 9
4. CALIBRATION PROCEDURES 11
4.1 Current Sample Calibrate 11
4.2 Remote Programming 11
4.3 Voltmeter Calibrate 11
4.4 Ammeter Calibrate 12
4.5 Constant Current Calibrate 12
4.6 Constant Resistance Calibrate 12
4.7 Current Limit Calibrate 13
4.8 Power Limit Calibrate 13
4.9 Overvoltage Calibrate 13
ILLUSTRATIONS
Front Panel Layout 14
Calibration Setup 15
Schematic 16

1. INTRODUCTION

The Dynaload is a precision instrument which simulates electrical loads to test power supplies, genrators, servo systems, batteries, and similar electrical power sources. It simulates, at the option of the user, resistive loads (amps/volt) or may be switched to a constant current load characteristic (current regulated at a pre-selected value). Provisions are also made for external programming in automated test setups. The external programming voltage is from $0-10 \mathrm{~V}$, with an input impedance of 10 K minimum. Load current is directly proportional to the programming voltage.

The meter normally reads average pulse current, so for accuracy when loading in the pulse mode it is recommended to monitor the current sample output.

The circuit breaker used to connect the source to the power devices in the load is electronically controlled and senses overvoltage.

In the event of an overvoltage condition protection circuits open the electronic circuit breaker. In the event of an overcurrent or overpower condition, circuitry is activated to limit the load current.

SPECIFICATIONS

The following specifications apply:
Load Voltage: 0-400V
Load Current: 0-600A
Average Power Dissipation: 0-4000W
Self-Protection:
Overvoltage--less than 440 V
Overcurrent--less than 640A
Over-power --less than 4500W

Front Panel Switches - Refer to front panel layout

S101 AC, Power ON/OFF Switch
S1 Voltmeter Range Select Switch
S2 Ammeter Range Select Switch
S3 DC Load ON/OFF Switch

MODE SELECTION

S4 60A DC LOAD - 0 to 60A constant current mode which is controlled by the front panel DC Load adjust.

S5 600A DC LOAD - 0 to 600A constant current mode which is controlled by the front panel DC Load adjust.

S6 12A/V DC LOAD - 0 to $12 A / V$ constant resistance mode which is adjusted by the front panel DC Load adjust.

S7 120A/V DC LOAD - 0 to 120A/V constant resistance mode which is adjusted by the front panel DC Load adjust.

S8 60A PULSE LOAD - 0 to 60A pulse mode. The amplitude, frequency, duty cycle and DC baseline are adjustable by the front panel controls.

S9 600A PULSE LOAD - 0 to 600A pulse mode. The amplitude, frequency, duty cycle and DC baseline are adjustable by the front panel controls.

S10 REMOTE PROGRAM - In this mode the user can program the current level with a 0 to 10 V programming voltage applied to $J 101$ on the rear panel. The front panel controls are locked out.

S11 SHORT CIRCUIT - Drives load to saturation. Effective resistance is less than . 01 ohms.

FRONT PANEL ADJUSTMENTS

Refer to Front Panel Layout.
DC Load Adjust - Coarse and fine adjust controls with a 10 to 1 ratio for precise setting of load current for the constant resistance and constant current functions. This control is also functional in the pulse mode to adjust the DC load component.

Pulse Amplitude - Coarse and fine adjust controls with a 10 to 1 ratio for setting the peak current in the pulse mode, the maximum setting is 600 Amps peak.

Fred. Adj. - Coarse and fine controls adjust the frequency of the pulse generator.

Width - Adjusts the percentage of the on time to off time ratio of the pulse generator a minimum of 10% on time, to maximum of 90% on time can be achieved.

FRONT PANEL STATUS INDICATORS

DC This indicator is on when the DC circuit breaker is engaged.

OV When an overvoltage condition exists this alarm will light and the DC breaker will disengage.

OC This alarm will light when the Dynaload is in current limit.

OP This alarm will light when the Dynaload has reached power limit.

OT If the Dynaload reaches overtemperature this alarm will light and the load will stop drawing current.

LOC This indicator will be on when one of the local modes are selected.

REM This indicator will light when the Dynaload is in the remote programming mode.

REAR PANEL CONNECTIONS
E+ Positive Load Input
E- Negative Load Input

J103 AC, Input Connector
J101 Program Input Connector

3. OPERATING INSTRUCTIONS

The following procedure is recommended for connecting the Dynaload: The $A C$ and $D C$ Dynaload switches should be turned off so that the load is disconnected. The load adjustment controls should be set in the counterclockwise position. The mode selector switch should be set to the appropriate mode to be used. The Dynaload should be plugged into standard $115 \mathrm{~V}, 50-60 \mathrm{~Hz}$ power (optional input voltage ranges are available), and connections should be made from the source to be tested to the appropriate load terminals of the dynaload. ($E+$ and $E-$ on the rear of the unit.) If external modulation is to be used, the external programming voltage should also be connected.

With the $A C$ power switch on, the digital meters should turn on. The DC-on should now be actuated. The front panel Dynaload voltmeter should indicate the source voltage. (If the circuit breaker does not close, or if there is no indication of source voltage, check all the external connections for voltage and polarity.) The load may now be increased by turning the load adjust controls clockwise until the appropriate load is obtained. External instrumentation may be used to monitor current waveforms and eliminate the effects of line voltage drops at high currents.

3.1 Constant Resistance Mode (Amos/Volt)

Two scales are provided, $0-12 A / V$ and $0-120 A / V$. Minimum resistance on the $0-12 A / V$ range is .083 ohms, and minimum resistance on the $0-120 \mathrm{~A} / \mathrm{V}$ range is .0083 ohms. For example, to test a 80 V battery with a two ohm resistive load, the $12 \mathrm{~A} / \mathrm{V}$ mode should be selected, and the coarse and fine load adjust controls adjusted to obtain the 40 A load. The two ohm load is now set, and this resistance value will remain constant for the full range of input voltage.

The resistive load characteristics of the dynaload simulate a pure resistance down to approximately 3 to $4 V$ input; i.e., for a given resistance setting, the current is directly proportional to the voltage over wide dynamic ranges. In the very low voltages, the power transistors will saturate.

3.2 Constant Current Mode

Some power sources, such as variable power supplies, are rated at a fixed maximum load current and adjustable over a predetermined voltage range: i.e., 5-20V 200A. If the resistive load characteristic were used for this type of test, it would be necessary to reset the load each time the power supply voltage was changed, in order to maintain the full load current. However, if the load is set to the 600A constant current mode, a load of 200A is applied, then the power supply can be adjusted from 5-20V, and the load current will remain constant.

It should be noted that many power supplies are designed for short circuit protection by internal current limiting and bendback, and therefore, may not start up into a constant current type of load. Accordingly, the constant resistance characteristic should be used as a load when simulating short circuit protection and recovery of most power supplies, unless otherwise specified by the manufacturer.

3.3 Pulse Mode

The pulse load may be varied from 0-60A or from 0-600A peak current by the pulse amplitude control on the front panel. The frequency may be varied from approximately 850 Hz to 20 KHz by the frequency control on the front panel and the duty cycle of the square wave can be adjusted from 10% to 90% with the width control on the front panel. This pulse load may be superimposed on top of a constant DC load, which may be selected by the DC load control on the front panel.

If the pulse is to be used down to a no-load state, the DC load controls should be turned fully counterclockwise. The maximum total of the pulse and DC load will be limited around 630A by the internal current limit protection.

[^0]The rise time of the load current pulse is approximately 30 us for a $60-600 \mathrm{~A}$ pulse and return. Operation at low voltages (less than 5 V) may result in transient to less than $1 V$ at the input terminal due to Ldi/dt drops in the power leads. This in turn may cause pulse waveform distortion and the user should monitor the load current waveforms to assure proper operation.

The DC and pulse load may be mixed in any combination through the use of the separate DC load coarse and fine and the pulse load coarse and fine controls.

3.4 External Modulation

In the external modulation mode, the dynaload acts as a constant current load with the constant current proportional to the external voltage applied to J101.

The dynaload will program from 0-600A with a 0-10V 1 MA control signal. The input impedance of the external modulation terminals is approximately 10 K ohms.

The linearity of the external program is set to be within $\pm 1 \%$ above 6A.

The load may be pulsed or it will follow the programming waveform within the transient response limits of the Dynaload.

3.5 Power Rating

The model DLF 400-600-4000 will dissipate 4000 W continuously. In order to assure that overheating does not occur, the rear and top of the Dynaload should be clear for the air intake and the air exhaust; i.e., the cooling air enters from the top and leaves from the rear. The dynaload should periodically be checked for dust accumulation.

3.6 Protective Circuits

The Dynaload has internal current limiting at approximately 630A maximum. In the event that an overvoltage is applied to the Dynaload, an internal overvoltage circuit will open the circuit breaker, thereby protecting all internal circuits.

The voltage current product (power) is also monitored to prevent an overpower condition from happening. Accordingly, the current limit characteristic is set to approximately 630A, which is maintained to approximately 6.3V. At this point, the current limit characteristic is reduced as the input voltage is increased, thereby limiting the maximum power which may be programmed into the Dynaload.

3.7 Special Applications

The Dynaload may be used for $A C$ load testing, within its ratings, by the use of an external bridge rectifier, so that the Dynaload sees pulsating DC, but the $A C$ source sees an $A C$ load. The
effect of the rectifier is to slightly distort 400-600-4000 effect of the rectifier is to slightly distort the Dynaload characteristics at low voltages and currents. The Dynaload is not normally recommended for testing AC sources above 1000 cycles unless the user specifically recognizes the load characteristics at higher frequencies.

3.8 Effects of Cable Inductance on Pulse Loading

When the Dynaload is used for high current pulse loading, the effects of cable inductance must be considered. Two special 5 foot coaxial power cables are provided with the DLF to minimize wiring inductance and their use is strongly recommended. Other types of wiring or larger cables will limit speed of response and may cause ringing, etc.

The critical parameters are the 30 microsecond rise time and the 4.0 V minimum compliance specifications. If the inductance of the cables from the voltage source to the dynaload is great enough to cause the voltage at the Dynaload to go below 4.0V, then excessive current wave form distortion will occur. This is because the power devices are driven into saturation in an attempt to reach the programmed current which cannot occur because of the low Drain voltage. Once in a saturated state, the response time is much slower. The result is a significant overshoot on the rising edge of the pulse.

The following is suggested to partially compensate for longer power leads:

1. 1 microhenry $=2.4$ feet of wire (total).
2. 50A 15 microseconds rise time $=3.3$ volt drop with 1 microhenry.
3. The inductive drop cannot exceed the difference between the source voltage and the 4.0 V compliance.

For example: To test a 8.0 V source with a 85A pulse, the maximum cable length would be:

$$
\begin{aligned}
& E \text { Max drop }=4.0 \mathrm{~V} \\
& E=L(d i / d t) 4.0 \mathrm{~V}=\mathrm{L}(85 \mathrm{~A} / 30 \mathrm{us}) \\
& L=1.41 \text { microhenries maximum } \\
& \text { Maximum cable length }=3.3 \text { feet total }
\end{aligned}
$$

Since this distance is relatively short, two low inductance cables are provided. The cables (5 feet long with an overall inductance of 5 uh) is compensated for internally by the load.

If the distance from the load to the source must be greater than this, there are several methods to increase the maximum distance. One way is to use several insulated conductors. This cuts the inductance in half if 4 are used instead of 2 , or by
one-third if 6 are used. This doubles or triples the maximum length, respectively. If oscillations or ringing occur with longer cables, the unit may be stabilized by an electrolytic capacitor in series with a damping resistor across the terminals of the load.
4. CALIBRATIQN PROCEDURES (Refer to FIG. 1)
4.1 Current sample calibrate
A. Set current sample for 10.0 V with Dynaload drawing 600A, adjust R5(CS CAL) on the A6 PC board.
B. With the Dynaload drawing 60A set current sample for 1.OV, adjust R10(CS OFFSET) on A6.
C. Repeat these two steps until no further adjustments are necessary.

4.2 Remote Programing Calibrate

A. Set programming source to 10.0 V adjust R1(REMOTE) on A1 so the Dynaload draws 600.0A
B. Set program source for 1.0 V and adjust R14(OFFSET) on A1 so the load draws 60.0A.
C. Repeat steps A and B until no further adjustments are necessary. Check programming linearity at 1.0V intervals.

4.3 Voltmeter Calibrate

A. Select the high range and apply 300 V to the load inputs. Adjust R47(HV) on A4 so the voltmeter indicates the correct voltage.

DLF 400-600-4000
B. Select the low range and apply 100 V to the load inputs. Adjust R45(LV) on A4 so the voltmeter indicates the correct voltage.

4.4 Ammeter Calibrate

A. Select the high range and with the Dynaload drawing 600.0A adjust R42(HA) on A4 so the ammeter indicates the correct current.
B. Select the low range and with the Dynaload drawing 100A adjust R40(LA) on A4 so the ammeter indicates the correct current.

4.5 Constant Current Calibrate

A. Select the 60A constant current mode and turn the DC Load coarse adjust fully clockwise. Adjust R4(LCC) on A4 so the load draws 60.0A.
B. Select the 600A constant current mode and turn the DC Load coarse adjust fully clockwise. Adjust R5(HCC) on A4 so the load draws 600.0A.

4.6 Constant Resistance Calibrate

A. Select the $12 \mathrm{~A} / \mathrm{V}$ constant resistance mode, apply 10.0V to DC load inputs and turn the DC Load coarse adjust fully clockwise. Adjust R8(LA/V) on A4 until the load draws 120.0A.
B. Select the $120 \mathrm{~A} / \mathrm{V}$ constant resistance mode, apply 5.0V to the DC load inputs and turn the DC Load coarse adjust fully clockwise. Adjust R9(HA/V) so the load draws 600.0A.

4.7 Current Limit Calibrate

Select the 600A constant current range and apply 5 V to the load inputs. Increase the current to between 610 and 640 amps. Adjust $R 7(C L)$ on A1 until current limit is achieved and the $O C$ alarm lights.

4.8 Power Limit Calibrate

Select the $0-60 \mathrm{~A}$ constant current mode and apply 100 V to the load inputs. Increase the current to 17 A and adjust R10(CL) on A1 to limit the current between 41.0 A and 44 A at 100 V input. Check that the PL alarm lights. Increase input voltage to 200 V and the current should be limited between 20.5 A and 22A.

4.9 Overvoltage Calibrate

Set overvoltage trip point between 410 V and 440 V by adjusting R24(OV) on A1. Check that the OV alarm lights.

FIGURE 1. CALIBRATIDN SETUP

| $\mathrm{Cl}_{47}-\mathrm{Cl}$ |
| :--- | :--- |
| 630 V | $\stackrel{400}{ }$

		8	noim ${ }^{\text {cosa }}$			How			$\mathrm{mpo}_{\mathrm{Ra}}$
					PMET				
		Wras ondyat parma Tanwors mals mactura 3 Puce secouls a a pact yomula MATERIAL	Comen						Ino
			OK	20n	searso	SCHEMATIC AB INPUT RELAY			
			A						
			p						
			1						
	DLF-4000	SEE ASOVE	neramo		\%	ama mont ua	zanac na 10		
NEXT ASSY	Usid DN					09004		109	
APPLTCATIEN					SCNI	DLF	4000/ABregay	max	W

REVISIDNS			
EDEEREV	DESCRIPTIDN		
	A	RELEASED TO PRODUCTIDN ERN16599	DATE

NOTES
L. UNLESS OTHERVISE SPECIFIED

ALL RESISTANCE VALUES ARE IN DHHS, $1 / 4 W, 2 \%$ all CAPACITANCE VALUES ARE IN MICRDFARADS

AS SELECTDR SVITCH FUNCTION

SVITCH IDENT	MODEL NO.							
	DLF 100-100-750	DF 400-100-750	D5 100-200-1500	W5 $400-200-1500$	X5 $100-600-4000$	DF 4 $400-600-4000$	DLF 600-5-750	DLF 600-5-1500
LCC	10 A	108	201	20 A	60 A	604	. 5 A	. 5 A
HCC	100A	1008	2004	200A	6004	600A	5 A	5A
LAAV	10A/V	$3 \mathrm{~A} / \mathrm{V}$	IENV	6AN	30A/V	dean	.01ANV	.01A/V
harv	100A/V	$304 / \mathrm{V}$	120A/V	G0ANV	300,	I20ar	LOANV	.loarV
L PLS	tos	10A	2 A	20A	601	60A	. 5 A	5A
H PLS	100 A	1004	2008	2004	6004	6004	54	5A
PGH	PGM	PGM	PGM	PGH	PGM	PGA	PGH	PGM
SHORT	SHORT	SHORT	SHCRT	SHORT	SHORT	SHORT	SHORT	SHDRT.

mDTES

1. UNLESS OTHERVISE SPECIFIED
all Resistance values are in dhms, 1/4W, 2% all capacitance values are in micrdfarads

REVISIDNS		
ZONE REV	DESCRIPTION	DATE [APPD
A	75 PRODUCTION	7-12.9, M

NOTESI

1. UNLESS QTHERWISE SPECIFIED.
ALL RESISTANCE VALUES ARE IN DHMS 1/4W 2%
ALL CAPACITANCE VALUES ARE IN MICRDFARADS

[^0]: *The pulse load is most effective with some steady state load current to which the pulse added. Pulsing from zero load creates a delay in the pulse rise and fall. The pulse current should be monitored on an oscilloscope to assure proper operation.

